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Abstract

A diffusion synthetic acceleration method is developed for the time dependent SN equations with
linear discontinuous finite element time differencing and discontinuous finite element spatial differ-
encing on unstructured grids. Both theoretical and computational results are given which demonstrate
the effectiveness and efficiency of the method.

1 Introduction

Various numerical schemes have been developed and used for the time-dependent SN equations.
Many of these schemes such as step, diamond and weighted diamond, involve only the zero time
moment of the angular flux. Other advanced differencing schemes, such as the finite-moments meth-
ods [Badruzzaman, 1991] and discontinuous finite-element methods (DFEM), involve higher time
moments of the angular flux. When standard Source Iteration (SI) is used as the solution method, it
is often desirable or even necessary to use diffusion synthetic acceleration (DSA) [Alcouffe, 1977] to
accelerate both the zero and higher time moments of the scattering source. For advanced time differ-
encing schemes the standard four step DSA technique [Larsen, 1982] leads to coupled DSA equations
for the zero and higher time moments of the scalar flux corrections that are extremely difficult to solve
efficiently. This difficulty of the four-step DSA equations is further compounded when advanced spa-
tial differencing schemes are used. In fact, even the time-independent four-step DSA equations are
difficult to solve efficiently with advanced spatial schemes. In this paper we develop a new DSA
method for solving the SN equations with linear DFEM (LDFEM) time differencing and DFEM spa-
tial differencing on unstructured grids. This new DSA method results in de-coupled equations that
can be efficiently solved with standard iterative solution techniques.

The paper will proceed as follows: in Section 2, we describe the analytic problem to be solved; in
Section 3 we describe the new DSA method for the LDFEM time differenced SN equations with
no spatial differencing; in Section 4 we extend the new DSA method to include DFEM spatial dif-
ferencing on unstructured grids; in Section 5, we present timing and iteration count results from an
unstructured tetrahedral mesh problem; and in Section 6 we finish with some concluding remarks.



2 Analytic Time-Dependent DSA

The problem to be solved is the single group, time-dependent SN equations in Cartesian coordinates
with isotropic scattering:
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with appropriate boundary and initial conditions. The SI and DSA equations are given by the follow-
ing:
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We note that Eqs.(3) and (4) are obtained by taking the angular P1 approximation to Eq.(2). In the
following sections, we consider LDFEM time differencing and then DFEM spatial differencing of the
above equations.

3 LDFEM Time Differenced DSA Method

In this section, we develop a new DSA method for the LDFEM time-differenced SN equations in
Cartesian geometry with no spatial differencing. We first introduce a time mesh with subscript “n”
referring to the n-th time element. The upper and lower boundaries of the time element are tn+1=2 and
tn�1=2 and the time element width is given by �tn = tn+1=2 � tn�1=2. For clarity we drop the “m”
subscripts. The LDFEM time differencing of Eq.(2) is given by:
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where (`+1=2)
n , �(`)n ;and qn refer to the average angular flux, scalar flux and fixed source in time,respectively,

and  t;(`+1=2)
n , �t;(`)n ;and qtn refer to the first time moment of the angular flux, scalar flux and fixed

source, repectively. Equations (6) and (7) can be rewritten in terms of  nand  t
n exclusively:
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The LDFEM time differenced form of Eqs.(3) and (4) is given by
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These equations are referred to as the standard DSA equations, which are a difficult set of coupled
equations that cannot easily be solved nor reduced to a form that is easily solved. To obtain DSA equa-
tions that are easier to solve, we systematically simplify these equations. First, we replace Eqs.(12)
and (14) with the diffusion approximation (Fick’s Law):
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We then de-couple Eqs.(11) and (13) by assuming the diamond approximation for ��t;(l+1)n in Eq.(11).
The diamond approximation is given by:
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Since, ��n�1=2 = 0, the diamond appromation gives

��t;(l+1)n = ��(l+1)n : (17)

Inserting Eqs.(17) and (15) into Eq.(11) and using Eq.(16) into Eq.(13), the simplified DSA acceler-
ated transport iterations become
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Note that Eq.(20) is de-coupled from Eq.(21) with Eq.(20) being solved first to obtain the average
scalar flux correction. The results are then used in Eq.(21), which is solved for the first time moment
of the scalar flux correction.

In order to justify our simplifications, we have performed a Fourier analysis on the simplified DSA
accelerated transport iterations in both slab and x-y geometries. In this analysis, the scattering ratio
is equal to unity and we use S4 quadrature. The slab geometry Fourier analysis spectral radii for both
SI and DSA are given in Table 1 and the x-y geometry Fourier analysis spectral radii for both SI and
DSA are given in Table 2. We see that the SI spectral radii approach unity as v�t becomes large and
as �t becomes large. The DSA method is unconditionally stable and effective, with the maximum
spectral radii bounded considerably away from unity.

Table 1: SI and DSA Fourier Analysis Spectral Radii For Slab Geometry With No Spatial Differenc-
ing.

�t = 1 �t = 10 �t = 100

v�t SI DSA SI DSA SI DSA
0.1 0.04 0.02 0.30 0.10 0.83 0.07
1.0 0.30 0.13 0.83 0.08 0.98 0.01

10.0 0.83 0.20 0.98 0.12 0.998 0.08
100.0 0.98 0.19 0.998 0.10 0.9998 0.10

1000.0 0.998 0.19 0.9998 0.10 0.99998 0.10

4 DFEM Space Differencing and LDFEM Time Differenced DSA Method

In this section we consider the DFEM spatial differencing of Eqs.(18)-(23). We begin by assuming
that the problem domain has been divided into a unstructured spatial grid of volume elements (spatial



Table 2: SI and DSA Fourier Analysis Spectral Radii For X-Y Geometry With No Spatial Differenc-
ing.

�t = 1 �t = 10 �t = 100

v�t SI DSA SI DSA SI DSA
0.1 0.04 0.02 0.30 0.10 0.83 0.07
1.0 0.30 0.13 0.83 0.11 0.98 0.01

10.0 0.83 0.23 0.98 0.13 0.998 0.10
100.0 0.98 0.25 0.998 0.10 0.9998 0.10

1000.0 0.998 0.25 0.9998 0.10 0.99998 0.10

cells). The elements shapes can be tetrahedra, hexahedra, prisms, pyramids, etc. The material prop-
erties within each element are assumed to be constant. The DFEM formulation and implementation
for time-independent problems has been described in [Wareing, et al., 1999].

The DFEM approximation for the k-th element is given by
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and the DFEM spatial differencing of Eq.(19) is given by
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Here, we have used standard summation convention (i.e. a repeated index in the same multiplicative
term implies a summation) for the

�!
r operator, the direction 
̂ , and the outward directed unit normal

vector n̂. The surface angular fluxes and first time moment of the angular flux are discontinuous and
are given defined by:
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where,
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inc;(`+1=2)
is the corresponding column vector of nodal angular flux values of the element

that shares the surface of the k-th element and  t;inc;(`+1=2)
n is the first time moment of the angular flux

of the element that shares the surface of the k-th element. We note that the surfaces of the elements
are given by a finite set of lower dimensional elements. For example, with tetrahedral elements, the
surface is comprised of four triangular elements

We now consider the DSA equations. The obtain a discretization of Eq.(20) one could certainly use the
method of Adams and Martin [Adams and Martin, 1992]. However, efficient solvers have not yet been
developed to solve these DFEM DSA equations on unstructured grids. At the present time, we use an
adaptation [Wareing, et al., 1999] of the Wareing, Larsen and Adams method [Wareing, et al., 1991],
which is an approximation to the Adams and Martin method. Here, the DFEM DSA equations are
replaced by continuous finite element (CFEM) DSA equations plus a local within-element mapping
procedure to project from the CFEM scalar flux corrections, ��n;cont

(`+1), to the approximated DFEM
scalar flux corrections, ��n

(`+1). The CFEM equations are derived by considering the contribution
from element k to the individual vertices forming element k given by
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A global CFEM matrix is formed for all vertices in the mesh by summing the individual element
contributions using the standard finite-element technique [Zienkiewicz, 1994]. This CFEM matrix is
a Nvertex x Nvertex symmetric positive-definite matrix, where Nvertex is the number of vertices in the
mesh. Marshak boundary conditions are used for all boundary vertices. The local within-element
mapping from continuous scalar flux corrections to discontinuous scalar flux corrections is given by
the following: Z
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The accelerated scalar fluxes are given by
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We note that this simplified DSA method applied to time-independent problems is conditionally ef-
fective and the effectiveness can degrade with skewed and high aspect ratio elements.

The discretization of Eq.(21) for the first time moment of the scalar flux correction requires consider-
able more detail. We begin by applying the DFEM approximation which gives
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We have labeled the surface first time moment of the scalar flux correction as ��t;s;(`+1)n , which is
discontinuous. We define this surface quantity using the usual partial-current approach:
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The problem with Eq.(34) is that ��t;(`+1)n and ��t;inc;(`+1)n are constant within their respective ele-
ments. Thus their gradients would appear to be zero. However, this assumption does not result in an
effective acceleration scheme. Therefore we must use some type of generalized gradient expression
in Eq.(34). We have chosen to use the following definition for the gradient of a function averaged
over a volume:
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where the gradient has been averaged over both element volumes k and k0, where k0 represents the in-
dex of the element that shares the l-th face of the k-th element. We heuristically extend this “averaged-
gradient” concept to obtain the final expression we desire
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The discretization of Eq.(21) is then given by
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with Marshak boundary conditions, whereNfaces is the number of faces of the element. This equation
leads to a Nelement x Nelement symmetric positive definite matrix. Finally,

�t;(`+1)n = �t;(`+1=2)n + ��t;(`+1)n : (39)

We note that our DSA method involves the solution of two de-coupled symmetric positive-definite
matrices, which can be efficiently solved using standard solution techniques.

We have performed a Fourier analysis on the simplified DSA accelerated transport iterations in slab
geometry with linear DFEM spatial differencing and in x-y geometry with bilinear DFEM spatial
differencing. In this analysis, the scattering ratio is equal to unity and we use S4 quadrature. The slab
and x-y geometry Fourier analysis predicted spectral radii for SI and DSA are given in Table 3 and
Table 4, respectively, for various combinations of v�t, �t, �x and�y. The trends in the spectral radii
are the same as that for no spatial differencing. We see that the method is very effective most of the
time. However, we do see a degradation in the spectral radii as the aspect ratio of the elements become
large. This is a direct result of using the adaptation of the Wareing, Larsen and Adams DSA method
for Eq.(20). The use of the Adams and Martin DSA method for Eq.(20) would eliminate this aspect
ratio problem. From the Fourier analysis, we have found that the spectral radii for time-dependence
is never larger than that for time-independent problems. We note that these Fourier analysis results
have been computationally verified using a research and development transport code.



Table 3: SI and DSA Fourier Analysis Spectral Radii For Slab Geometry With LDFEM Spatial Dif-
ferencing.

�t = 1 �t = 10 �t = 100

v�t �x SI DSA SI DSA SI DSA
0.1 0.1 0.07 0.04 0.43 0.19 0.91 0.41
0.1 1.0 0.09 0.05 0.50 0.25 0.91 0.45
0.1 10.0 0.09 0.05 0.50 0.25 0.91 0.45
1.0 0.1 0.30 0.11 0.83 0.23 0.98 0.29
1.0 1.0 0.43 0.19 0.90 0.41 0.99 0.49
1.0 10.0 0.50 0.25 0.91 0.45 0.99 0.49
10.0 0.1 0.83 0.19 0.98 0.30 0.998 0.26
10.0 1.0 0.83 0.23 0.98 0.29 0.999 0.46
10.0 10.0 0.90 0.41 0.99 0.49 0.999 0.49

5 Unstructured Mesh Test Problem

This test problem is a sphere with a diameter of 2.0 cm containing a 1:0 cm x 1:0 cm x 1:0 cm cube
in the center. Both the sphere and box are purely scattering media with a scattering ratio of unity.
The total cross section in the sphere not containing the box is 10 cm�1 and that in the box, �t;box; is
to 0.01cm�1;1.0 cm�1 or 10.0 cm�1. There is a homogeneous source of strength 1 particle

cm3
�s

. We set
v�t to 0.1cm, 1.0 cm or 10.0 cm. The problem is meshed with unstructured tetrahedral elements
(1735 elements total). S4 level-symmetric quadrature is used and the relative pointwise convergence
criterion is 10�4 for the scalar fluxes.

Table 5 provides the total CPU time and number of iterations for each configuration of v�t and �t;box
for both SI and the new DSA method. We see that the DSA method is both effective and efficient
for all v�t and �t;box. We note that the CPU time required to solve the two diffusion equations
increases the CPU time per iteration by only � 5% and thus, allows for unconditional efficiency for
this problem. The efficiency will certainly increase as the quadrature order is increased.

6 Conclusions

We have successfully developed a DSA method for the SN equations with LDFEM time differencing
and DFEM spatial differencing on unstructured grids. The method is effective and should be efficient
for most problems. The only limiting problem is the conditions under which the approximate DSA
acceleration equations for the zero time moments of the scattering source is effective. We are currently
investigating efficient solution techniques for unconditionally effective DFEM DSA equations. The
acceleration equations for the first time moment of the scattering source do not present any additional
problems to those encountered in time-independent problems.



Table 4: SI and DSA Fourier Analysis Spectral Radii For X-Y Geometry With LDFEM Spatial Dif-
ferencing.

�t = 1 �t = 10 �t = 100

v�t �x �y SI DSA SI DSA SI DSA
0.1 0.1 0.1 0.04 0.03 0.31 0.17 0.86 0.44
0.1 1.0 1.0 0.08 0.04 0.47 0.25 0.90 0.48
0.1 10.0 10.0 0.09 0.05 0.50 0.25 0.91 0.46
0.1 0.1 1.0 0.08 0.05 0.50 0.30 0.91 0.63
0.1 0.1 10.0 0.09 0.06 0.50 0.33 0.91 0.65
1.0 0.1 0.1 0.27 0.11 0.82 0.25 0.98 0.49
1.0 1.0 1.0 0.31 0.15 0.88 0.44 0.99 0.63
1.0 10.0 10.0 0.50 0.25 0.91 0.48 0.99 0.58
1.0 0.1 1.0 0.34 0.20 0.86 0.66 0.99 0.83
1.0 0.1 10.0 0.49 0.43 0.91 0.82 0.99 0.90

10.0 0.1 0.1 0.82 0.21 0.98 0.45 0.998 0.49
10.0 1.0 1.0 0.82 0.23 0.98 0.49 0.998 0.70
10.0 10.0 10.0 0.88 0.44 0.99 0.63 0.999 0.66
10.0 0.1 1.0 0.82 0.25 0.98 0.76 0.99 0.88
10.0 0.1 10.0 0.88 0.79 0.99 0.96 0.999 0.98

Table 5: CPU Time and Iteration Counts for the Unstructured Mesh Test Problem.

SI DSA
v�t �t;box CPU Time (s) Iterations CPU Time (s) Iterations
0.1 0.01 57.1 19 47.8 14
0.1 0.1 57.1 19 47.3 14
0.1 1.0 59.9 20 46.7 14
0.1 10.0 62.6 21 49.2 15
1.0 0.01 140.3 50 63.3 19
1.0 0.1 140.3 50 59.6 18
1.0 1.0 203.2 66 52.6 16
1.0 10.0 219.4 79 60.9 19
10.0 0.01 330.2 116 51.2 15
10.0 0.1 328.8 115 47.6 14
10.0 1.0 333.6 117 44.1 13
10.0 10.0 440.0 154 43.7 13



Acknowledgments

This work was performed under the auspices of the United States Department of Energy.

References

[Badruzzaman, 1991] Badruzzaman, A. Finite-Moments Approaches to the Time-Dependent Boltz-
mann Equation. Prog. in Nucl. Energy, 25, 127 (1991).

[Alcouffe, 1977] Alcouffe, R.E. Diffusion Synthetic Acceleration Methods for the Diamond Differ-
enced Discrete Ordinate Equations.Nucl. Sci. Eng., 66, 344 (1977).

[Larsen, 1982] Larsen, E.W. Unconditionally Stable Diffusion Synthetic Acceleration Methods for
the Slab Geometry Discrete Ordinates Equations Part1: Theory.Nucl. Sci. Eng., 82, 47 (1982).

[Wareing, et al., 1999] Wareing, T.A., McGhee J.M., Morel J.E., and Pautz S.D. Discontinuous Finite
Element Sn Methods on 3-D Unstructured Grids. to be submitted to Nucl. Sci. Eng., (1999).

[Adams and Martin, 1992] Adams, M.L. and Martin, W.R. Diffusion Synthetic Acceleration of Dis-
continuous Finite Element Transport Iterations.Nucl. Sci. Eng., 111, 145 (1992).

[Wareing, et al., 1991] Wareing, T.A., Larsen, E.W. and Adams, M.L. Diffusion Accelerated Dis-
continuous Finite Element Schemes for the SN Equations in Slab and X-Y Geometries. Proc. Int.
Topl. Mtg on Advances in Mathematics, Computations and Reactor Physics, Pittsburg, PA., USA,
April 29 - May 2, 1991, American Nuclear Society (1991).

[Zienkiewicz, 1994] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edi-
tion, Volume 1, McGraw-Hill Book Company, (1994).


